The Weak Haagerup Property II: Examples

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Similarities and the Haagerup Property

A new class of groups, the locally finitely determined groups of local similarities on compact ultrametric spaces, is introduced and it is proved that these groups have the Haagerup property (that is, they are a-T-menable in the sense of Gromov). The class includes Thompson’s groups, which have already been shown to have the Haagerup property by D. S. Farley, as well as many other groups acting...

متن کامل

An Exotic Group with the Haagerup Property

We prove the Haagerup property for an infinite discrete group constructed using surgery on a Euclidean Tits building of type Ã2. The group Γ./ studied in this paper is the fundamental group of a 2-dimensional cell complex V./ defined by gluing 13 faces along their boundaries respecting orientation and labelling as follows:

متن کامل

The Haagerup property for locally compact quantum groups

The Haagerup property for locally compact groups is generalised to the context of locally compact quantum groups, with several equivalent characterisations in terms of the unitary representations and positive-definite functions established. In particular it is shown that a locally compact quantum group G has the Haagerup property if and only if its mixing representations are dense in the space ...

متن کامل

Weak Banach-Saks property in the space of compact operators

For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and‎ ‎a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$‎, ‎it is shown that the strong Banach-Saks-ness of all evaluation‎ ‎operators on ${mathcal M}$ is a sufficient condition for the weak‎ ‎Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in‎ ‎Y^*$‎, ‎the evaluation op...

متن کامل

The Haagerup property, Property (T) and the Baum-Connes conjecture for locally compact Kac-Moody groups

We indicate which symmetrizable locally compact affine or hyperbolic Kac-Moody groups satisfy Kazhdan’s Property (T), and those that satisfy its strong negation, the Haagerup property. This reveals a new class of hyperbolic Kac-Moody groups satisfying the Haagerup property, namely symmetrizable locally compact Kac-Moody groups of rank 2 or of rank 3 noncompact hyperbolic type. These groups thus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2014

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnu132